Internationalized domain names
The permitted character set of the DNS prevented the representation of names and words of many languages in their native alphabets or scripts. ICANN has approved the Punycode-based Internationalized domain name (IDNA) system, which maps Unicode strings into the valid DNS character set. In 2009 ICANN approved the installation of IDN county code top-level domains. In addition, many registries of the existing TLDs have adopted IDNA. Name servers
The Domain Name System is maintained by a distributed database system, which uses the client-server model. The nodes of this database are the name servers. Each domain has at least one authoritative DNS server that publishes information about that domain and the name servers of any domains subordinate to it. The top of the hierarchy is served by the root nameservers, the servers to query when looking up (resolving) a top-level domain name (TLD).
Authoritative name server
An authoritative name server is a name server that gives answers that have been configured by an original source, for example, the domain administrator or by dynamic DNS methods, in contrast to answers that were obtained via a regular DNS query to another name server. An authoritative-only name server only returns answers to queries about domain names that have been specifically configured by the administrator.
An authoritative name server can either be a master server or a slave server. A master server is a server that stores the original (master) copies of all zone records. A slave server uses an automatic updating mechanism of the DNS protocol in communication with its master to maintain an identical copy of the master records.
Every DNS zone must be assigned a set of authoritative name servers that are installed in NS records in the parent zone.
When domain names are registered with a domain name registrar their installation at the domain registry of a top level domain requires the assignment of a primary name server and at least one secondary name server. The requirement of multiple name servers aims to make the domain still functional even if one name server becomes inaccessible or inoperable. The designation of a primary name server is solely determined by the priority given to the domain name registrar. For this purpose generally only the fully qualified domain name of the name server is required, unless the servers are contained in the registered domain, in which case the corresponding IP address is needed as well.
Primary name servers are often master name servers, while secondary name server may be implemented as slave servers.
An authoritative server indicates its status of supplying definitive answers, deemed authoritative, by setting a software flag (a protocol structure bit), called the Authoritative Answer (AA) bit in its responses. This flag is usually reproduced prominently in the output of DNS administration query tools (such as dig) to indicate that the responding name server is an authority for the domain name in question. Recursive and caching name server
In principle, authoritative name servers are sufficient for the operation of the Internet. However, with only authoritative name servers operating, every DNS query must start with recursive queries at the root zone of the Domain Name System and each user system must implement resolver software capable of recursive operation.
To improve efficiency, reduce DNS traffic across the Internet, and increase performance in end-user applications, the Domain Name System supports DNS cache servers which store DNS query results for a period of time determined in the configuration (time-to-live) of the domain name record in question. Typically, such caching DNS servers, also called DNS caches, also implement the recursive algorithm necessary to resolve a given name starting with the DNS root through to the authoritative name servers of the queried domain. With this function implemented in the name server, user applications gain efficiency in design and operation.
The combination of DNS caching and recursive functions in a name server is not mandatory, the functions can be implemented independently in servers for special purposes.
Internet service providers typically provide recursive and caching name servers for their customers. In addition, many home networking routers implement DNS caches and recursors to improve efficiency in the local network.DNS resolvers
The client-side of the DNS is called a DNS resolver. It is responsible for initiating and sequencing the queries that ultimately lead to a full resolution (translation) of the resource sought, e.g., translation of a domain name into an IP address.
A DNS query may be either a non-recursive query or a recursive query:
* A non-recursive query is one in which the DNS server provides a record for a domain for which it is authoritative itself, or it provides a partial result without querying other servers.
* A recursive query is one for which the DNS server will fully answer the query (or give an error) by querying other name servers as needed. DNS servers are not required to support recursive queries.
The resolver, or another DNS server acting recursively on behalf of the resolver, negotiates use of recursive service using bits in the query headers.
Resolving usually entails iterating through several name servers to find the needed information. However, some resolvers function simplistically and can communicate only with a single name server. These simple resolvers (called "stub resolvers") rely on a recursive name server to perform the work of finding information for them.
No comments:
Post a Comment